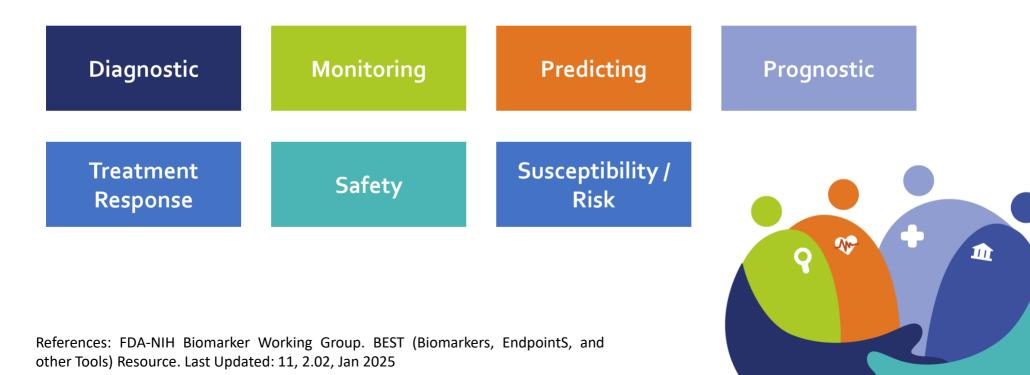
Annual Conference EMSP

Biomarkers: The Key to Predicting and Preventing MS Relapses

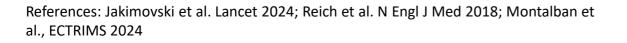
Ioannis Vardakas

MS center, Department of Neurology, University of Ulm, Germany

Conflicts of Interest

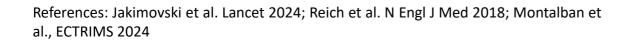

- I. Vardakas has received consulting and/or speaker honoraria and/or travel support from Alexion, Novartis, Sanofi and UCB.
- No conflicts of interest related to the content of this presentation.

What are biomarkers?

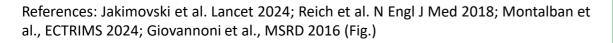

Biomarkers:

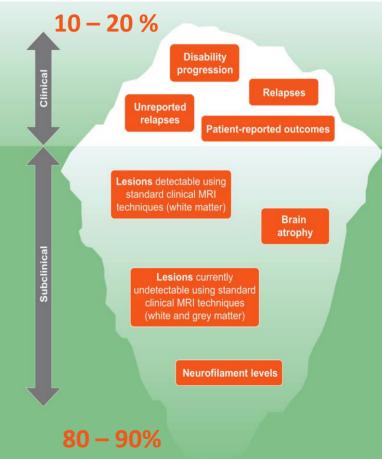
→ disease characteristics that can be **<u>objectively measured</u>**

For Diagnosis:


- MS remains an **exclusion diagnosis**
 - → combination of different biomarkers for MS diagnosis
 - → distinction from relevant differential diagnoses

For Diagnosis:


- MS remains an exclusion diagnosis
 - → combination of different biomarkers for MS diagnosis
 - → Introduction of new biomarkers:
 - → <u>CSF:</u>
 - → kappa-free light chains (κ-FLC)
 - → Specific MRI biomarkers:
 - → Central Vein Sign
 - → Paramagnetic Rim Lesions
 - → Optical Coherence Tomography



For Disease Monitoring:

- Disease course highly variable
- A minority of disease processes are clinically evident
- Multimodal approach
 - → Imaging
 - → Fluid biomarkers
 - → Digital sensors

Targets:

- Early diagnosis
- Sufficient suppression of inflammation
- Early detection of treatment failure

Assist Shared Decision Making

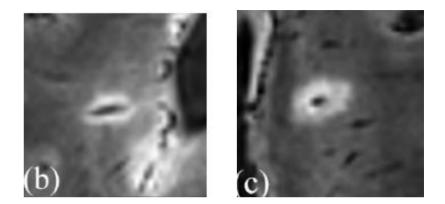
References: Jakimovski et al. Lancet 2024; Reich et al. N Engl J Med 2018; Montalban et al., ECTRIMS 2024; Giovannoni et al., MSRD 2016 (Fig.)

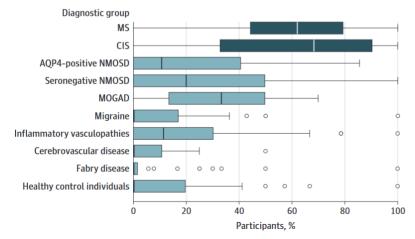
Improved Long-Term Outcome

Imaging – MRI

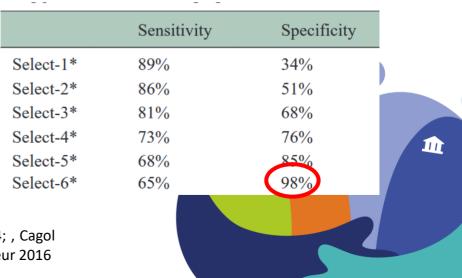
Magnetic Resonance Imaging (MRI)

- Most valuable diagnostic and monitoring biomarker
- Increased importance with 2024 revisions of the McDonald criteria
 - → Without MRI no MS diagnosis possible
 - → Introduction of specific MRI biomarkers




References: Wattjes et al., Lancet Neur 2021; Montalban et al., ECTRIMS 2024

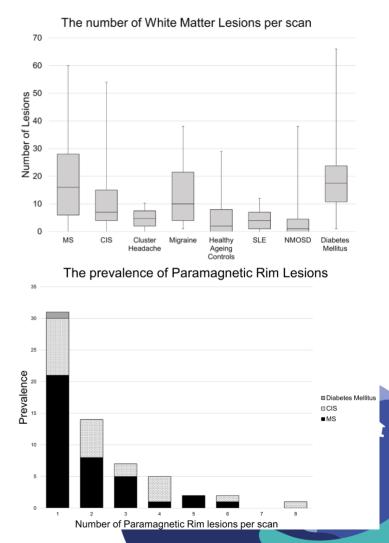
Specific MRI Biomarkers


Central Vein Sign (CVS):

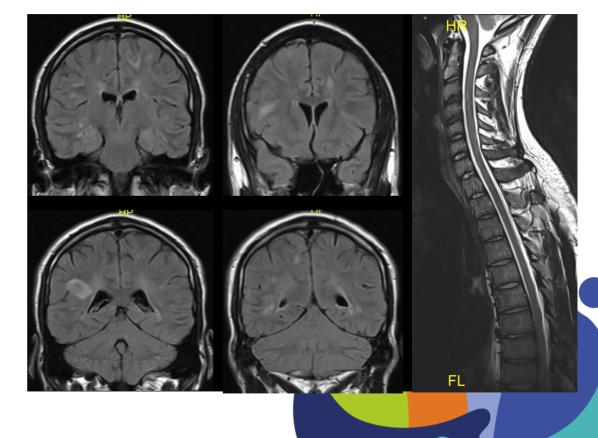
- thin line or small dot
- runs through the lesion
- positioned centrally in the lesion

References: Wattjes et al., Lancet Neur 2021; Montalban et al., ECTRIMS 2024; , Cagol et al., JAMA Neur 2024, Daboul et al., MSJ 2024 (Fig.), Sati et al., Nature Rev Neur 2016

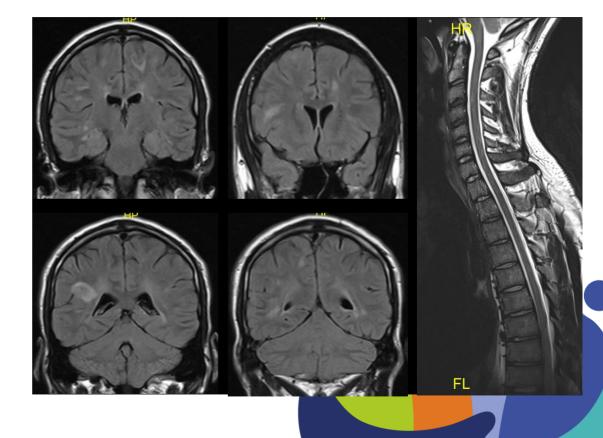
A Percentage of CVS-positive lesions per participant


Specific MRI Biomarkers

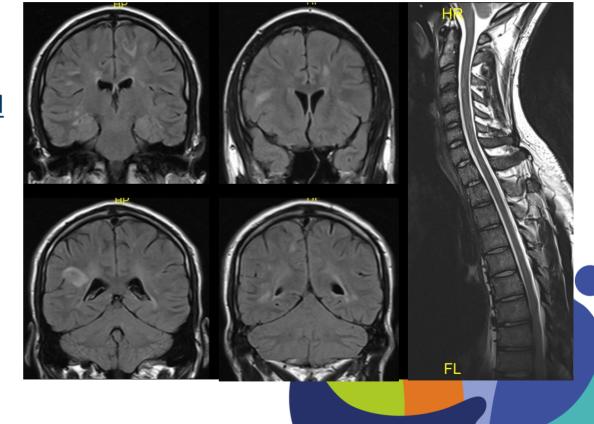
Paramagnetic Rim Lesions (PRL):


- Highly specific for MS
- Prognostic value:
 - \rightarrow 1/3 of MRI lesions in SPMS and PPMS

References: Montalban et al., ECTRIMS 2024, Calvi et al., MSJ 2020, Calvi et al., Neurology 2022; Meaton et al., MSJ 2022 (Figs.)

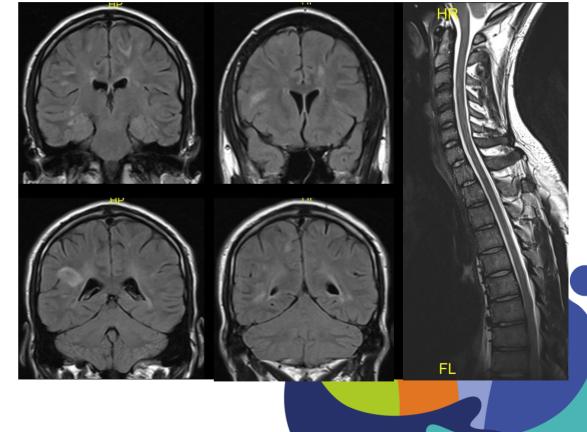


- male, 20y
- First attack:
 - Optic Neuritis, right eye
 - Good recovery after two steroid courses (VA 0.9)
- EDSS 1.5


but:

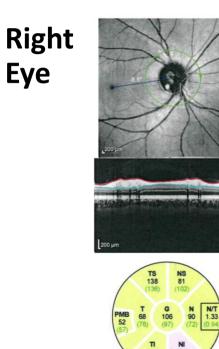
- <u>MRI:</u>
- > 40 MS lesions at diagnosis
- Localisation:
 - Periventricular
 - Juxtacortical / Cortical
 - Infratentorial
 - <u>Spinal</u>

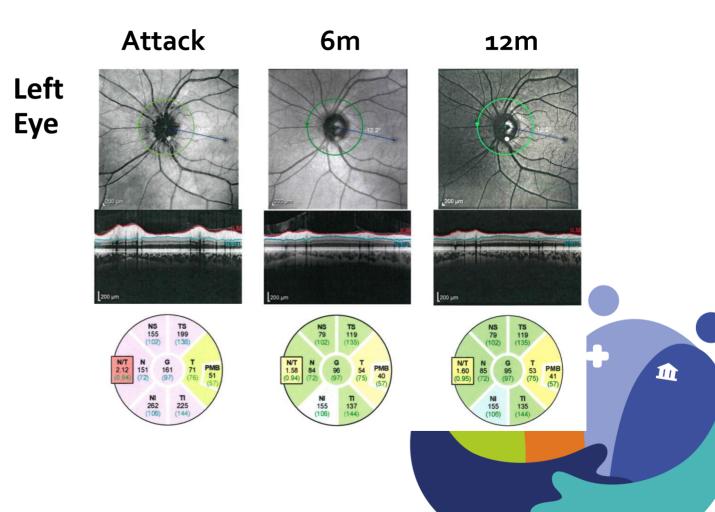

but:


- Beck's Depression Inventory:
 - moderate depression
- <u>Fatigue Scale for Motor and</u>
 <u>Cognitive Functions:</u>
 - moderate fatigue
- <u>SDMT:</u> below average
- <u>9-Hole-Peg-Test (right-handed)</u>:
 - right 22,8 sec (>) left 20,1 sec

but:

- Beck's Depression Inventory:
 - moderate depression
- <u>Fatigue Scale for Motor and</u>
 <u>Cognitive Functions:</u>
 - moderate fatigue
- <u>SDMT:</u> below average
- <u>9-Hole-Peg-Test (right-handed)</u>:
 - right 22,8 sec (>) left 20,1 sec


Imaging – Optical Coherence Tomography


Optical Coherence Tomography

- Examination of the eye background
- Useful for Diagnosing Optic Neuritis
- Usually different patterns between MS and NMOSD/MOGAD

Optical Coherence Tomography

References: own case

Fluid Biomarkers – kappa-Free Light Chain

Reiber's diagram for KFLC KFLC index 6.1 E1) K-FLC monomer Type I Type II Type III Type IV Type V

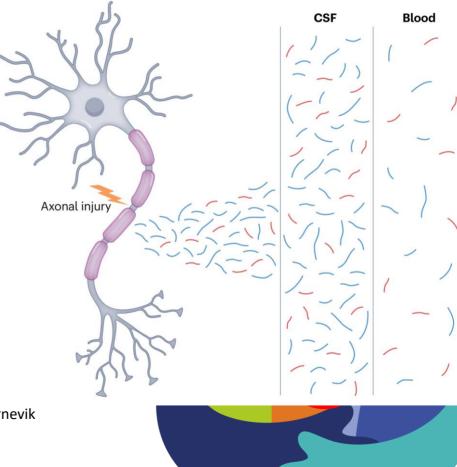
kappa – Free Light Chain (к-FLC)

Oligoclonal bands (OCB) reliable but:

- → technically demanding
- \rightarrow rater dependent
- → limited availability

<u>к-FLC:</u>

- \rightarrow studies on diagnostic value in MS
- → Interchangeable with OCB
 (proposed McDonald Criteria 2024)
- \rightarrow examiner-independent
- \rightarrow cost-effective
- → we need standardization!

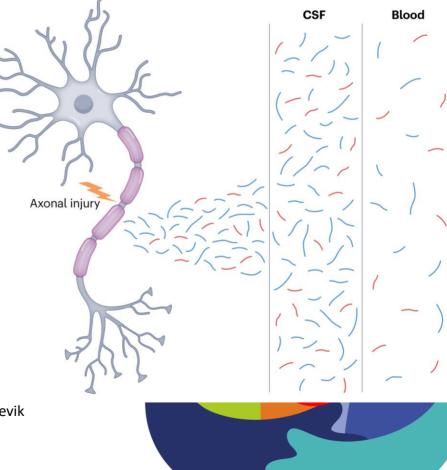

References: Senel M et al., PLoS One 2014; Presslauer S et al; MSJ 2016; Arrambide G et al., Brain 2018; Hegen et al, MSJ 2023; Konen et al. Autoimmun Rev 2025 (Fig.)

Fluid Biomarkers – Neurofilament light chain (NfL)

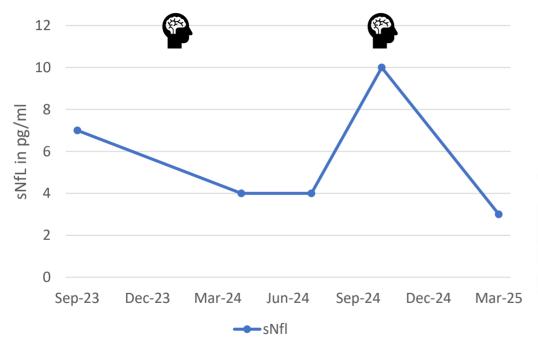
Neurofilament light chain (NfL)

- Short-term integration into clinical routine expected
- Major structural protein of the neural cell
- Release in CSF after axonal damage
- In Serum 2-3% of the CSF levels

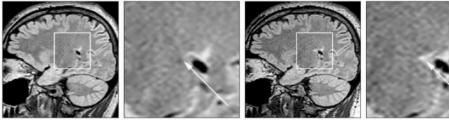
References: Kuhle et al., Clin Chem Lab Med 2016; Bittner et al., Brain 2021; Bjornevik et al., JAMA Neurol 2020; Khalil et al., Nature Reviews Neurology, 2024 (Fig.)



Neurofilament light chain (NfL)

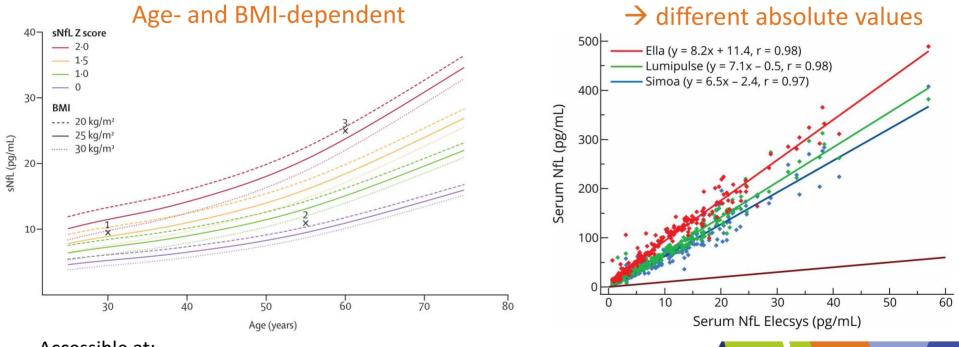

In MS:

- **1** up to 6 years before first attack
- Correlates with:
 - → Relapse risk
 - → New T2 lesions oder active lesion in MRI
- at treatment failure
- at CNS complications of MS treatments (e.g. PML)


References: Kuhle et al., Clin Chem Lab Med 2016; Bittner et al., Brain 2021; Bjornevik et al., JAMA Neurol 2020; Khalil et al., Nature Reviews Neurology, 2024 (Fig.)

Case Report 2

Anzahl (Mindestdurchmesser 3 mm bei 3D; 5 mm bei 2D)	Aktuelle Untersuchung vom	Vergleich mit der Voruntersuchung vom
	T2-Läsionen (±nterratervariabilität)	Neue oder vergrößerte T2-Läsionen (±Interratervariabilität)
Total	7 (±1)	1
Kortikal / juxtakortikal	1	1
Periventrikulär	5 (±1)	
Tiefe weiße Substanz	1	
Infratentoriell	0	0



-M-

References: own case

Neurofilament light chain (NfL)

Challenges:

Different assays (techniques)

Accessible at: https://shiny.dkfbasel.ch/baselnflreference/

References: Benkert et al., Lancet Neurology, 2022 (Fig.), Mondesert et al., Neurology, 2025 (Fig.)

Fluid Biomarkers – The Future: Glial Fibrillary Acidic Assay (GFAP)

Glial Fibrillary Acidic Assay (GFAP)

- Signature protein of astrocytes (30-40% of brain cells)
- Release in CSF after astrocyte damage, but also astrocyte activation

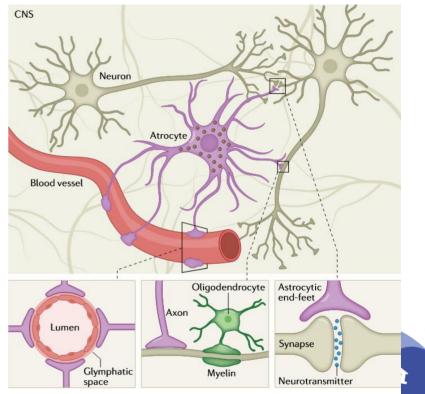


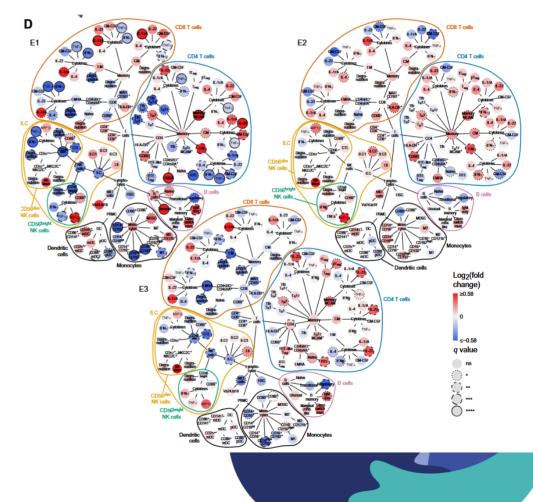

Fig. 1 | Astrocytes have multiple physiological roles in the CNS. Astrocytic end-feet containing glial fibrillary acidic protein (brown circles) are an essential component of the blood–brain barrier and the glymphatic system¹⁵⁷. Astrocytes are critical in maintaining axonal metabolic homeostasis¹⁵⁸ and contribute to tripartite synapses¹⁵⁹.

References: Abdelhak et al., Nature Rev Neur 2022 (Fig.); Abdelhak et al., Annals Clin Transl Neur 2023; Barro et al., Neurology 2022, Monreal et al., Brain 2023; Madill et al., Annals Clin Transl Neur 2024

Glial Fibrillary Acidic Assay (GFAP)

In MS:

- fin progressive MS and active relapsing MS
- Correlates with:
 - → severity of disability (EDSS)
 - → Lesion volume
 - → Brain atrophy
- Predicts:
 - → future progression
 - → need of future gait aid
 - → future conversion to SPMS


References: Abdelhak et al., Nature Rev Neur 2022 (Fig.); Abdelhak et al., Annals Clin Transl Neur 2023 (Fíg.); Barro et al., Neurology 2022, Monreal et al., Brain 2023; Madill et al., Annals Clin Transl Neur 2024

Fluid Biomarkers – The Future: Proteomics

MS Endophenotypes

- Combination of:
 - → Cell signatures (high-dimensional flow cytometry)
 - → Protein signatures (serum proteomics)

- Identification of <u>three</u> distint peripheral blood endophenotypes:
 - → Endophenotype 3 (after 4 years follow up):
 - → Higher disease progression
 - → Higher MRI activity

Take home Message

Take Home Message

- Combined use of imaging and fluid biomarkers can change MS care
 - → Individualized risk assessment
 - → Personalized treatment in all disease phases
 - → Create evidence for Shared Decision Making
- MRI: most important diagnostic and monitoring biomarker

Fluid biomarkers

- → κ-FLC can assist MS diagnosis
- → NfL: Assessment of ongoing inflammation / Short-Term integration in clinical routine expected
- → GFAP: ongoing studies on predictive value for disability progression

