MULTI-DISCIPLINARY APPROACH IN REHABILITATION: HOW CAN DIGITAL HEALTH IMPROVE IT?

Prof. Daphne Kos Vice President RIMS

European network for best practice and research

OUTLINE

- Rehabilitation
- Use of technology in rehab
- Examples
- Key messages

Vision of RIMS (Rehabilitation in MS)

access to evidence-based rehabilitation

for all people with MS

throughout Europe (and abroad)

when they need it

www.eurims.org

Rehabilitation

participation

activity

Enjoy your life, **your way**

autonomy

Pictures: all-free-download.com; www.melbournecitymission.org.au; http://www.michaelleestallard.com

Content of rehabilitation

Intervention	No studies, participants	Inpatient	Community	Long-term survivorship	GRADE*
Multidisciplinary rehabilitation	9 RCTs, 1 CCT, 954				Moderate
Physical therapy	76 trials (45 RCTs)			>	High
Progressive resistance training	6 RCTs, 6 non- RCTs, 289				Low
Strength training	5 RCTs, 2 CCTs 249				Moderate
Exercise therapy (walking)	35 RCTs, 1255		_	\implies	High
Exercise therapy (fatigue)	60 RCTs, 2952		_	\implies	High
Physical therapy (balance)	11 RCTs, 340	-	\rightarrow		Low
Exercise therapy (depression)	15 RCTs, 591		\rightarrow		Low
Exercise therapy (cognition)	8 RCTs, 644		\rightarrow		Low
Respiratory muscle training	15 trials (6 RCTs)		\rightarrow		Low
Energy conservation	4 RCTs, 2 CCTs, 494				Moderate
НВОТ	9 RCTs, 504		\longrightarrow		Low
WBV	11 RCTs, 314		\longrightarrow		Low
Electrical stimulation	1 RCT, 40		\rightarrow		Very low
Hippotherapy	3 non-RCTs, 36		\rightarrow		Very low
от	96 trials		_		Low
Neuropsychological	20 RCTs, 986		-	\rightarrow	Low
Cognitive rehabilitation	32 RCTs, 1527		-	\rightarrow	Low
Cognitive Behavioural Therapy	7 RCTs		\rightarrow		Moderate
Memory rehabilitation	8 RCTs, 521		\rightarrow		Low
Dietary intervention (PUFAs)	6 RCTs, 794		\longrightarrow		Low
Dietary intervention (Vitamin D)	1 RCT, 49		\longrightarrow		Very low
Vocational rehabilitation	1 RCT. 1 CCT. 80		_	\rightarrow	Low
Telerehabilitation	9 RCTs, 531			\rightarrow	Low
Fatigue management programs	18 trials, 895			>	High
Upper limb rehab	41 trials (16 RCTs)				Low
Spasticity management interventions	9 RCTs, 341			\rightarrow	Low

Khan F, Amatya B (2017). Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews. Archives of Physical Medicine and Rehabilitation, 98(2), 353-367.

Telerehabilitation

Telerehabilitation for persons with multiple sclerosis (Review)

Khan F, Amatya B, Kesselring J, Galea M. Telerehabilitation for persons with multiple sclerosis. *Cochrane Database of Systematic Reviews* 2015, Issue 4. Art. No.: CD010508. Doi: 10.1002/14651858.CD010508.pub2.

JMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

Viewpoint

The Use of Digital and Remote Communication Technologies as a Tool for Multiple Sclerosis Management: Narrative Review

Martin Marziniak¹, MD, PhD; Giampaolo Brichetto², MD, PhD; Peter Feys³, PhD; Uta Meyding-Lamadé⁴, MD, PhD; Karen Vernon⁶, RGN, PGDip; Sven G Meuth⁶, MD, PhD

eHealth technologies in MS

Monitoring: biosensors

MULTIPLE SCLEROSIS JOURNAL

Topical Review

e-Health and multiple sclerosis: An update

Luigi Lavorgna, Francesco Brigo, Marcello Moccia, Letizia Leocani, Roberta Lanzillo⁽¹⁾, Marinella Clerico, Gianmarco Abbadessa, Klaus Schmierer⁽²⁾, Claudio Solaro, Luca Prosperini⁽²⁾, Giacchino Tedeschi, Gavin Giovannoni and Simona Bonavita Multiple Sclerosis Journal 2018, Vol. 24(13) 1657–1664

DOI: 10.1177/ 1352458518799629 © The Author(s), 2018. Article reuse guidelines: sagepub.com/journals-

permissions

Table 2. Function and possible application of different biosensors in multiple sclerosis.

Biosensor	Function	Potential applications in MS
Accelerometer	Measure linear acceleration in one axis (uni-axial accelerometers) or in tridimensional field (tri-axial accelerometers)	Analysis of gait patterns Measurement of total step count Identification and quantification of falls Development of algorithms to predict fall risk Gait training
Gyroscope	Measure angular velocity, record orientation and postural changes. Record movement, collect data on acceleration and angle of force.	Identification of falls Identification of movement of climbing and descending stairs Analysis of gait patterns Analysis of static balance Identification and measurement of tremor Identification and measurement of ataxia Gait training Development of assistive technology (e.g. eating utensils)
Eye-tracking through near infrared light	Measurement of pupil center and corneal reflection	Assessment of function and responsiveness of cornea and pupil
Heart rate monitors	Measure heart rate	Assessment of heart reactivity during movement or postural changes
Body temperature monitors	Measure body temperature	Identification of pseudorelapses by correlating heat-related disability
Actigraphy	Measure body movements	Identification and characterization of sleep abnormalities, measurement of sleep duration and assessment of sleep efficiency

MS: multiple sclerosis.

Monitoring using mobile phone & wearables

Small physical & cognitive tests & subjective scores

(Credit: Screenshot by Download.com)

www.floodlightopen.com

Sanders et al., 2016

Essential tremor analysis

López-Blanc et al., 2018

Improving physical activity & fatigue

D'hooghe et al., 2018

Monitoring (influence of) symptoms in MS using mobile application

Assessment: self-report using mobile application

Analysis I.7. Comparison I App versus paper, Outcome 7 Acceptability (dichotomous measurements number of participants expressing their views on any given outcome).

Belisario et al., 2015

Assessment & training upper limb using sensors & VR

Behrendt & Schuster-Amft, 2018

Computer-based cognitive training

www.rehacom.com/

Computer-based cognitive training: evidence

	Exp	erimen	เล		ontrol			Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Random, 95% CI	
1.1.1 Selective Reminding	Test (S	RT) del	lay mer	погу							
Cerasa, et al., 2012	7.11	2.53	12	6.2	3.02	11	3.0%	0.32 [-0.51, 1.14]			
Stuifbergen et al., 2012	43.63	11.32	34	40.43	9.34	27	4.3%	0.30 [-0.21, 0.81]		+	
Brissart et al., 2013	7.7	1.17	10	4.8	3.77	10	2.7%	1.00 [0.05, 1.94]			
Bonavita et al., 2015	8.17	1.77	18	6.42	1.5	14	3.3%	1.03 [0.28, 1.78]			
Perez-Martin et al., 2017	8.03	2.79	30	6.22	2.86	32	4.3%	0.63 [0.12, 1.14]		_ _	
1.1.2 Spatial Recall Test											
Cerasa, et al., 2012	18.42	6.22	12	24.3	3.99	11	2.8%	-1.07 [-1.96, -0.19]	_		
Brissart et al., 2013	13.4	1.65	10	10.07	3.33	10	2.6%	1.21 [0.24, 2.19]		——	
Bonavita et al., 2015	16.81	5.14	18	19.23	5.74	14	3.5%	-0.44 [-1.14, 0.27]			
Perez-Martin et al., 2017	22.77	5.56	30	21.38	4.14	32	4.3%	1.28 [-0.22, 0.78]		+	
1.1.3 Digit Span Forward											
Voqt et al., 2009	9.21	1.93	15	8.8	1.52			3 [-0.49, 0.95]			
Brissart et al., 2013	5.9	0.74	10				~	[-0.50, 1.28]		<u> </u>	
1.1.4 Digit Span Backward	1					\mathbf{a}	\cap				
Voqt et al., 2009	7.87	2.38			n r	11.		a 65 (-0.09, 1.39)			
Brissart et al., 2013	4.3	1.16	×	$\mathbf{\gamma}$	5		- 10	-0.20 (-1.08, 0.68)			
Hancock et al., 2015	4.8	1.74		11	<u> </u>		3.4%	-0.43 [-1.16, 0.29]			
1.1.5 Verbal Fluency word	list										
Cerasa, et al., 2012	20.8	5.69	12	20.6	5.59	11	3.1%	0.03 (-0.78, 0.85)			
Brissart et al., 2013	18.5	2.83	10	15.7	4.56	10	2.8%	0.71 (-0.20, 1.62)			_
Bonavita et al., 2015	16.84	2.82	18	17.98	3.54	14	3.5%	-0.35 [-1.06, 0.35]			
Rilo et al.,2016	27.62	5.59	21	30.57	11.91	21	3.9%	-0.31 [-0.92, 0.30]			
1.1.6 Brief Visuospatial M	emory	est-de	lav (BV	MT)							
Stuifbargen et al. 2012	0.2	2	24	0 1	2.1	27	4 296	0.061.044.0571			
Hancock et al., 2012	21 13	4 95	15	20.29	6.85	15	4.370	0.08 [-0.44, 0.57]			
1 1 7 Verbal Learning Tee	t dolay	0.00		20.20	0.00		0.470	0.14 [0.00, 0.00]			
Chuitherreen et al. 2012	12.2	26	24	10.7		27	4.206	0.44.0.0.0.0.000			
Stulibergen et al., 2012	12.3	3.0	34	10.7	4.1	21	4.3%	0.41 [-0.10, 0.92]			
Hancock et al., 2015	51.33	10.12	15	40.33	12.30	15	3.470	0.43 [-0.29, 1.16]			
Hanssen et al., 2016 Rilo et al. 2016	9 71	2.67	21	0/.8 0/0	1.91	21	4.9%	0.04 [-0.32, 0.39]			
10 61 81.,2010	0.71	2.07	21	3.40	1.01	21	5.5 %	-0.33 [-0.34, 0.20]			
1.1.8 Paced Auditory Seria	al Additi	ion Test	t-3 s (P	ASAT)							
Cerasa, et al., 2012	36.2	9.75	12	-41	8.79	11	0.6%	8.00 [5.33, 10.66]			
Stuifbergen et al., 2012	45.2	11.2	34	46.7	11.2	27	4.3%	-0.13 [-0.64, 0.37]			
Bonavita et al., 2015	40	7.76	18	38.95	7.98	14	3.5%	0.13 [-0.57, 0.83]			
Hancock et al., 2015	93.64	15.49	15	78.57	24.65	15	3.3%	0.71 [-0.03, 1.45]			-
Perez-Martin et al., 2017	29.7	15.48	30	30.44	16.08	32	4.3%	-0.05 [-0.54, 0.45]			
Total (95% CI)			588			546	100.0%	0.22 [0.01, 0.43]		◆	
Heterogeneity: Tau ² = 0.20	Chi ² =	79.64, 0	df = 28	(P < 0.0	0001); F	²= 65%	6	-	1		+
Test for overall effect: Z = 2	.04 (P =	0.04)							-2	-1 0 1	2
est for sub(rou) differences: Chi ² = 10.62 df = 7 (P = 0.16) ² = 34.1%											

	Experimental Control Std. Mean Difference				Std. Mean Difference	Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 Stroop Color-Word Interference Test (SCWIT)									
Cerasa, et al., 2012	19.41	5.14	12	16.5	5.22	11	3.2%	0.54 [-0.29, 1.38]	
Bonavita et al., 2015	89.66	28.42	18	96.96	44.89	14	3.8%	-0.20 [-0.90, 0.51]	
Hancock et al., 2015	35.93	6.68	15	33.2	6.94	15	3.7%	0.39 [-0.33, 1.11]	
Rilo et al.,2016	42.77	11.6	21	43.62	11.36	21	4.2%	-0.07 [-0.68, 0.53]	
1.1.2 Symbol Digit Modali	ties Test								
Vogt et al., 2009	53.87	14.7	15	58.67	19.19	15	3.7%	-0.27 [-0.99, 0.45]	
Cerasa, et al., 2012	38.69	9.9	12	37.3	8.45	11	3.3%	0.15 [-0.67, 0.96]	
Stuifbergen et al., 2012	49.6	11.1	34	48.1	14	27	4.7%	0.12(0.39, 0.62]	
Bonavita et al., 2015	28.22	7.99	18	30.87	12.72	14	3.90	95, 0.45]	
Hancock et al., 2015	53.13	10.79	15	50.67	15.86			54, 0.89]	
Rilo et al.,2016	42.62	12.46	21	47.52				9, 0.23]	
Perez-Martin et al., 2017	46.47	13,3				-	ne	2, 0.38]	
1.1.3 Spatial Recall Test				• -	20	S	∇		
Cerasa, et al., 201				сII	12	, [–]		-1.07 [-1.96, -0.19]	
Brissart et al., 20	_	CF	25	2.			2.7%	1.21 [0.24, 2.19]	
Bonavita et al., 20	rO				5.74	14	3.8%	-0.44 [-1.14, 0.27]	
Perez-Martin et al.				21.38	4.14	32	4.8%	0.28 [-0.22, 0.78]	
1.1.4 Verbal Fluen	_								
Cerasa et al. 2012	20.8	5.69	12	20.6	5.59	11	3.3%	0.03 (-0.78, 0.85)	
Brissantetal 2012	18.5	2.83	10	15.7	4 56	10	2.9%	0.71 [-0.20 1.62]	
Bonavita et al. 2015	16.84	2.00	18	17.98	3.54	14	3.8%	-0.35 [-1.06_0.35]	
Rilo et al., 2016	27.62	5.59	21	30.57	11.91	21	4.2%	-0.31 [-0.92, 0.30]	
1.1.5 Trail Making Test A									
Caraca at al. 2012	- 11 02	121	12	- 40.0	1204	11	2.2%	-0.291-1.10.0.641	
Derasa, et al., 2012 Rilo et al. 2016	-44.03	16.52	21	-40.9	19.94	21	1 204	-0.20 [-1.10, 0.34]	
A A C Tasil Making Tast D	140.24	10.03	21	-40.43	10.23	21	4.270	-0.27 ["0.00, 0.34]	
1.1.6 Trail Making Test B	400.0	27.0	40	4.24.4	27.4		2.20	0.04 (0.04 .0.02)	
Gerasa, et al., 2012	-120.9	37.9	12	-121.1	51.4	11	5.3%	0.01 [-0.81, 0.82]	
1.1.7 Paced Auditory Seri	ial Additi	on Test-	3 s (P/	ASAT)					
Cerasa, et al., 2012	36.2	9.75	12	-41	8.79	11	0.6%	8.00 [5.33, 10.66]	
Stuifbergen et al., 2012	45.2	11.2	34	46.7	11.2	27	4.7%	-0.13 [-0.64, 0.37]	
Bonavita et al., 2015	40	7.76	18	38.95	7.98	14	3.8%	0.13 [-0.57, 0.83]	
Hancock et al., 2015	93.64	15.49	15	78.57	24.65	15	3.6%	0.71 [-0.03, 1.45]	
Perez-Martin et al., 2017	29.7	15.48	30	30.44	16.08	32	4.8%	-0.05 [-0.54, 0.45]	
Total (95% CI)			496			461	100.0%	0.04 [-0.17, 0.25]	+
Heterogeneity: Tau ² = 0.18	3; Chi ² = 6	64.69, df	= 26 (P < 0.00	01); I ² =	60%		-	
Test for overall effect: Z = 0	0.35 (P =	0.73)							-z -1 U 1 2
Test for sub(rou) differen	ces: Chi ^a	² = 4.90	df = 6 (P = 0.58	0 ² = 0	%			

Dardiotis et al., 2018

Heidelberg University Hospital

www.anagennisimedicalresort.com

Training motor performance using robotics & VR in addition to traditional rehab

Interaction between treatment and evaluation time confirmed that differences in FIM scores between the two groups changed over time. CG, control group; EG, experimental group; FIM, Functional Independence Measure.

Interaction between treatment and evaluation time confirmed that differences in the time up and go scores between the two groups changed over time. CG, control group; EG, experimental group.

Training: depression

Online tools for individuals with depression and neurologic conditions

A scoping review

Sara Lukmanji, MPP, Tram Pham, BHSc, Laura Biakie, BA; Callie Clark, MSc; Nathalie Jetté, MD, MSc; Samuel Wiebe, MD, MSc; Andrew Bulloch, PhD; Jayna Holroyd-Leduc, MD; Sophia Macrodimitris, PhD; Aaron Mackie, MD, Scott B. Patter, MD, PhD

COMMUNITY - RESOURCES -

OVERCOMING

AROUT MS

Lukmanji et al., 2017

Training:VR for pain reduction

PAIN. Publish Ahead of Print();, FEB 2019 DOI: 10.1097/j.pain.00000000001539, PMID: 30817437 Issn Print: ModeLIssnPrint Publication Date: 2019/02/01

Virtual Reality, Music and Pain: developing the premise for an interdisciplinary approach to pain management

Emily Honzel;Sarah Murthi;Barbara Brawn-Cinani;Giancarlo Colloca;Craig Kier;Amitabh Varshney;Luana Colloca;

+ Author Information

Investigation of the effect of the virtual reality application on experimental pain severity in healthy

> bilek Karaman¹ Funda Erol² Dilek Yılmaz³ Yurdanur Dikmen²

Department of Health Care Services, Ahmet Erdogan Health Services Vocational School, Bulent Ecevit University, Zonguldak, Turkey
 Department of Nursing, Sakarya University Faculty of Health Sciences, Baraya, Turkey
 Department of Nursing, Surva Uldug University Faculty of Health Sciences, Buras, Turkey

Karaman et al., 2019

Advice: sensors at home - GPS

and Clinical

Original Research Paper

Movement measurements at home for multiple sclerosis: walking speed measured by a novel ambient measurement system

Victoria MJ Smith, Jonathan S Varsanik, Rachel A Walker, Andrew W Russo, Kevin R Patel, Wendy Gabel, Glenn A Phillips, Zebadiah M Kimmel and Eric C Klawiter

Documenting outdoor activity and travel behaviour in persons with neurological conditions using travel diaries and GPS tracking technology: a pilot study in multiple sclerosis

An Neven 🖾 Davy Janssens, Geert Alders, Geert Wets, Bart Van Wiimeersch & Peter Fevs Pages 1718-1725 | Received 25 Jul 2012, Accepted 15 Nov 2012, Published online: 24 Jan 2013

G Download citation Attps://doi-org.kuleuven.ezproxy.kuleuven.be/10.3109/09638288.2012.751137

DISABILITY AND REHABILITATION, 2018 VOL. 40, NO. 12, 1434-1442 http://dx.doi.org/10.1080/09638288.2017.1300332

Check for update

A questionnaire study to explore the views of people with multiple sclerosis of using smartphone technology for health care purposes

Nicola Griffin^a and Maria Kehoe^b

^aDepartment of Physiotherapy, King's College Hospital NHS Foundation Trust, London, United Kingdom; ^bDepartment of Health Service Executive Community Physiotherapy, Kildare/West Wicklow, Naas, Ireland

Profile of web-based PT programme users

- technology literate (or have a significant other who are)
- value the flexibility
- prefer to exercise independently in an environment of their choice
- have confidence and skills to self-manage without face
 to face contact

A qualitative exploration of the participants' experience of a web-based physiotherapy program for people with multiple sclerosis: Does it impact on the ability to increase and sustain engagement in physical activity?

Rachel Dennett 💌 🕲, Elaine Coulter 跑, Lorna Paul 😰 & Jennifer Freeman 😰 Received 26 Jul 2018, Accepted 11 Feb 2019, Published online: 23 Mar 2019

🖆 Download citation 👘 🛽 https://doi-org.kuleuven.ezproxy.kuleuven.be/10.1080/09638288.2019.1582717 👘 🧖 Check for updates

Digital health

RECOMMENDATION AND JUSTIFICATION/REMARKS

CLIENT-TO-PROVIDER TELEMEDICINE (Recommended only in specific contexts or conditions)

RECOMMENDATION 4

WHO recommends client-to-provider telemedicine:

- under the condition that it complements, rather than replaces, face-to-face delivery of health services; and
- in settings where patient safety, privacy, traceability, accountability and security can be monitored.

In this context, monitoring includes the establishment standard operating procedures that describe protocols for ensuring patient consent, data protection and storage, and verifying health worker licenses and credentials.

DIGITAL TRACKING COMBINED WITH DECISION SUPPORT AND TARGETED CLIENT COMMUNICATION (Recommended only in specific contexts or conditions)

RECOMMENDATION 9

WHO recommends the use of digital tracking combined with both decision support and targeted client communication under these conditions:

- in settings where the health system can support the implementation of these intervention components in an integrated manner; and
- for tasks that are already defined as within the scope of practice for the health worker; and
- where potential concerns about data privacy and transmitting sensitive content to clients can be addressed.

Rehabilitation partners using digital health

Other relevant health care professionals

Key messages

- Digital health may add-on to rehabilitation
- No replacement of face-to-face rehab
- Assessment, monitoring, training
- Consider context, preferences and abilities of people with MS and relevant others
- Large (multicenter) studies are needed to support evidence

