New Technology equals more choice and therapeutic opportunities for PwMS?

Two examples of emerging assistive technologies

Angela Davies Smith
MS Research Unit, BrAMS Centre, Frenchay Hospital, Bristol, UK
2 examples

1. Functional electrical stimulation (FES) for footdrop in MS using a tilt sensor trigger

2. Tremor control for upper limb intention tremor in MS
1. Functional electrical stimulation (FES) for footdrop in MS using a tilt sensor trigger
Footdrop and MS

- MS can present a range of mobility problems including footdrop
- Footdrop corrected to some extent by splinting/orthotics
- Functional Electrical Stimulation around since 1960s using pressure sensor in heel to trigger ankle lift
- More recently the WalkAide® footdrop stimulator has been developed and is being used in a developing clinical service in Bristol
WalkAide® footdrop stimulator

- Does not require a heel insert
- Worn below the knee
- Cuff shaped to the contour of the leg
- Easy to apply
Stimulation triggered by a tilt sensor

Posterior angle: ON
Swing: ON
Anterior angle: OFF
Clinical service for footdrop

Commenced January 2010

50 people attended for assessment (March 2011)

31 suitable & offered 3 month home trial
Perception of Walking Ability

Visual Analogue Scale (VAS)

Initial n=12
No FES
Mean 4.3 (1.5-7.1)

Initial n=12
With FES
Mean 8.8 (7.1-10)

9 month follow up n=8
No FES
Mean 3.9 (1.7-5)

9 month follow up n=8
With FES
Mean 8.1 (6.5-10)
Trips & Falls

Initial assessment (pre-FES)
- All reported tripping frequently (daily/weekly)
- 25% reported falls

12 week follow up
- No trips or falls whilst using FES
- Reduced number trips & falls when not wearing FES
10 metre timed walk

At 3 months (end of home trial)

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>without FES</th>
<th>with FES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>7- 77.2</td>
<td>7.6- 61.8</td>
</tr>
</tbody>
</table>
10 metre timed walk

At 3 months (end of home trial)

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>without FES</th>
<th>with FES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>7- 77.2</td>
<td>7.6- 61.8</td>
</tr>
</tbody>
</table>
10 metre timed walk

At 3 months (end of home trial)

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>without FES</th>
<th>with FES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>7- 77.2</td>
<td>7.6- 61.8</td>
</tr>
</tbody>
</table>
Summary- Functional Electrical Stimulation using tilt sensor trigger

✓ All reported the WalkAide easy to apply and comfortable
✓ FES using a tilt sensor trigger is effective for a range of gait speeds and gait characteristics in people with MS and footdrop.
✓ FES prevents falls and improves walking
✓ Tilt sensor gives more choices
2. Movement control for upper limb intention tremor in MS
What is tremor in MS?

Tremor occurs during attempts at purposeful movement and is worse when approaching or at the target.

- often called ‘intention tremor’
Tremor impacts on everyday activities
What is tremor in MS?

Tremor occurs during attempts at purposeful movement and is worse when approaching or at the target.

- Often called ‘intention tremor’

There is no satisfactory treatment for tremor in MS (NICE Guidelines 2003)
Features of MS related tremor

- Rhythmic frequency (usually 3-8 Hz)
- Frequently occurs with ataxic movement & muscle weakness
- Rarely seen at rest
Recording of a reach-retrieve task (functional)
Impact of Tremor

- Occurs when intentional movements are made
- Often in both arms
- Approx. 30%* PwMS have tremor severe enough to affect activities of daily living (ADL)
- 10% of those affected have incapacitating tremor
- Leads to loss of independence

*Alusi et al 2001
Impact of Tremor on daily activities - user survey

Impact of Tremor on Ability to Work
- Not affected: 78%
- Adapted: 7%
- Gave up: 12%
- Not Applicable: 3%

Impact of Tremor on Leisure Activities
- None: 67%
- Adapted: 13%
- Gave up: 6%
- Not Applicable: 14%

EU Study ‘TREMOR DE 3216’
Developing technologies to measure and control tremor

i) To develop a clinically useful measurement tool
 - More objective and detailed than visual assessment
 - Quick and easy to use
 - Measure extent and location of tremor
 - Measure effectiveness of interventions

ii) To develop a surface worn tremor control system
 - develop models and design control system for intention tremor
i) To develop a clinically useful measurement tool

2 EMG sensors

5 orientation sensors
(sensor on top of shoulder not visible)
Sensor recording during performance of a functional reach and retrieve task

Elapsed time: 14.1
Euler angles: [X4: -8.5, Y4: 25.6, Z4: 3.0]
Finger to nose test
3D plot during a finger to nose test (viewed from behind)

No MS - no tremor

MS & moderate intention tremor
Recording of amount of tremor (amplitude) during finger to nose test

Person with MS & moderate tremor
ii) Develop a surface worn tremor control system

- Surface worn - needs design modification
- Damping tremor at elbow during purposeful movements
New Technology equals more choice and therapeutic opportunities for PwMS?

- Tilt sensor triggered functional electrical stimulation (WalkAide) for footdrop

- Measurement and control system for intention tremor
Acknowledgements

Funders: EU FP5, NIHRi4i innovation fund, EPSRC, MS Research charity

Participants and carers

Laurence Ketteringham, the key engineer in ‘tremor’ studies was awarded Researcher of the year by the MS Society UK in 2010

Thank you